SEMESTRAL EXAMINATION M. MATH I YEAR, II SEMESTER 2015-2016 COMPLEX ANALYSIS

Max. 100.

Time limit: 3hrs

Notations: U is the open unit disc, $T = \partial U$, Log is the principal logarithm.

1. If Ω is a horizontal or vertical open strip in \mathbb{C} show that there is a bounded holomorphic function on Ω which is not a constant. [10]

2. Prove that there is no holomorphic function f in $\{z : |z| > 4\}$ such that $f'(z) = \frac{z^2}{(z-1)(z-2)(z-3)} \quad \forall z.$

Hint: compute the integral of the right side over a suitable closed path. [15]

3. Let f be a complex valued continuous function on [a, b]. If $\left| \int_{a}^{b} f(t) dt \right| =$

 $\int_{a}^{b} |f(t)| dt$ show that $e^{i\theta} f$ is non-negative for some real number θ . Use this to

show that if f is holomorphic on a region Ω and |f| is harmonic then f is a constant. [20]

HInt: write
$$\int f(t)dt$$
 as $re^{i\theta}$ and use the fact that $\operatorname{Re}\{e^{-i\theta}f(t)\} \leq |f(t)|$.

4. Let $f: U \xrightarrow{a} U$ be holomorphic. If f has more than one fixed point show that $f(z) = z \ \forall z$. [15]

5. Show that the collection of all maps from \mathbb{C}_{∞} into itself of the type $f(z) = \frac{az+b}{cz+d}$ where a, b, c, d are integers, ad - bc = 1, a and d are odd, b and c are even is a group under composition of functions. [15]

6. Prove that
$$f(re^{i\theta}) = \sum_{n \neq 0} \frac{1}{n} r^{|n|} e^{in\theta}$$
 defines a harmonic function on U [15]

7 Let f be holomorphic in a region Ω . Suppose that f''(z) + f(z) = 0 for all $z \in \Omega$ and f(c) = f'(c) = 0 for some $c \in \Omega$. Show that $f \equiv 0$. [10]